Search results for "Bifurcation analysis"
showing 7 items of 7 documents
Convergent Analytic Solutions for Homoclinic Orbits in Reversible and Non-reversible Systems
2013
In this paper, convergent, multi-infinite, series solutions are derived for the homoclinic orbits of a canonical fourth-order ODE system, in both reversible and non-reversible cases. This ODE includes traveling-wave reductions of many important nonlinear PDEs or PDE systems, for which these analytical solutions would correspond to regular or localized pulses of the PDE. As such, the homoclinic solutions derived here are clearly topical, and they are shown to match closely to earlier results obtained by homoclinic numerical shooting. In addition, the results for the non-reversible case go beyond those that have been typically considered in analyses conducted within bifurcation-theoretic sett…
Bifurcation analysis of a TaO memristor model
2019
This paper presents a study of bifurcation in the time-averaged dynamics of TaO memristors driven by narrow pulses of alternating polarities. The analysis, based on a physics-inspired model, focuses on the stable fixed points and on how these are affected by the pulse parameters. Our main finding is the identification of a driving regime when two stable fixed points exist simultaneously. To the best of our knowledge, such bistability is identified in a single memristor for the first time. This result can be readily tested experimentally, and is expected to be useful in future memristor circuit designs.
Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth
2015
We focus on the morphochemical reaction–diffusion model introduced in Bozzini et al. (2013) and carry out a nonlinear bifurcation analysis with the aim to characterize the shape and the amplitude of the patterns arising as the result of Turing instability of the physically relevant equilibrium. We perform a weakly nonlinear multiple scales analysis, and derive the normal form equations governing the amplitude of the patterns. These amplitude equations allow us to construct relevant solutions of the model equations and reveal the presence of multiple branches of stable solutions arising as the result of subcritical bifurcations. Hysteretic type phenomena are highlighted also through numerica…
Transitions in a stratified Kolmogorov flow
2016
We study the Kolmogorov flow with weak stratification. We consider a stabilizing uniform temperature gradient and examine the transitions leading the flow to chaotic states. By solving the equations numerically we construct the bifurcation diagram describing how the Kolmogorov flow, through a sequence of transitions, passes from its laminar solution toward weakly chaotic states. We consider the case when the Richardson number (measure of the intensity of the temperature gradient) is $$Ri=10^{-5}$$ , and restrict our analysis to the range $$0<Re<30$$ . The effect of the stabilizing temperature is to shift bifurcation points and to reduce the region of existence of stable drifting states. The…
Asset price dynamics in a “bull and bear market”
2021
Abstract We generalize an existing asset market model with heterogenous agents. In particular, we consider the case in which no-trade and low-trade intervals of chartists and fundamentalists respectively are not congruent. Thus we model chartist and fundamentalists who respond to asset prices in agent-specific neighborhoods around the fundamental value with different trade intensities. The resulting asset price dynamics is generated by a one-dimensional 5-piece linear map with discontinuities. Our analysis of this map focusses on coexisting price equilibria. Conditions for their existence and stability are determined analytically. By visualizing the results we allow for a basic bifurcation …
On some bifurcation analysis techniques for continuous systems
2016
This paper is devoted to techniques in bifurcation analysis for continuous mechanical systems, concentrating on polynomial equations and implicitly given functions. These are often encountered in problems of mechanics and especially in stability analysis. Taking a classical approach, we summarize the relevant features of the cubic polynomial equation, and present some new aspects for asymptotics and parametric representation of the solutions. This is followed by a brief look into the implicit function theorem as a tool for analyzing bifurcations. As an example from mechanics, we consider bifurcations in the transverse free vibration problem of an axially compressed beam. peerReviewed
Pattern formation and transition to chaos in a chemotaxis model of acute inflammation
2021
We investigate a reaction-diffusion-chemotaxis system that describes the immune response during an inflammatory attack. The model is a modification of the system proposed in Penner, Ermentrout, and Swigon [SIAM J. Appl. Dyn. Syst., 11 (2012), pp. 629-660]. We introduce a logistic term in the immune cell dynamics to reproduce the macrophages' activation, allowing us to describe the disease evolution from the early stages to the acute phase. We focus on the appearance of pattern solutions and their stability. We discover steady-state (Turing) and wave instabilities and classify the bifurcations deriving the corresponding amplitude equations. We study stationary radially symmetric solutions an…